Uncategorized

Wireless Gas Monitoring : Applications

Unlike wired gas detection systems, which have expensive infrastructure requirements, wireless systems can be deployed just about anywhere there is a potential for a gas leak. The most likely applications include remote and local detection, temporary situations and monitoring to improve asset management.

Wireless remote and local gas detection: Tank farms, oil and gas production facilities, refineries, pipelines, abandoned wells and waste treatment plants are all good candidates for wireless gas detection.

Tank farms :Storage tanks are one of the most common sources of gas leaks. They are always located some distance from the central facility and sometimes near residential areas. If the wind is blowing away from any wired detectors onsite, for example, plant operators may not know of any leaks until residents call in complaining about the smell. Multiple sensors could cover more tanks, and they could all be networked through a common gateway.

Top view of tanks on factory

Oil and gas production facilities and refineries: Wireless monitors can provide additional protection for workers in refineries. If the wired detection system is not up to current standards and/or lacking coverage due to plant expansions, the workers and the community may be at risk. A typical inside the plant application might include setting a local field mounted PLC to operate a ventilation system or shutdown routine based on a signal from the wireless monitor.

Pipelines: The pipelines that transport hydrocarbon products to and from wells, tanks, and processing and storage facilities are another common source of leakage. Breaches at these  facilities are quite prevalent today. The pumps, valves, couplings, flanges, pipes and other trappings surrounding the piping are all vulnerable to age, installation errors and trauma. Some of these components are underground, so finding them is even more difficult. With hundreds of miles of pipes, it’s impractical to deploy thousands of local pipe leak detection devices necessary to cover the leaks within pipes.Gas industry, underground gas storage facilities

Plugged and abandoned wells: Capping an abandoned well in concrete does not guarantee that it won’t leak, but because it is not operating, no one is around to notice problems and there is little incentive to invest in wired detectors. But leakage could result in risk to the area, fines and other problems and an easily deployed wireless solution could be very valuable.

Wastewater treatment plants: Pollution control is another area rife for improved gas monitoring. Waste produces methane which is highly combustible but few municipalities have the resources to devote to wiring up waste locations. Yet the risk is significant and can be mitigated with the installation of inexpensive wireless monitors on anaerobic digester tanks, solids landfill or other vulnerable points.

In our next post, we will explore the applications of the wireless device in temporary situations. Stay tuned!

by: Wil Chin, Vice President of Marketing and Business Development at United Electric Controls

Joe Mancini, Senior Product Manager at United Electric Controls

Greg LaFramboise, Retired Wireless Technology Lead, Chevron

Uncategorized

Wireless Gas Monitoring : The wireless connection

Wireless technology removes the physical and economic barriers associated with wired gas detection devices. It can save up to 90 percent of installed cost and time and can be applied in both field and plant networks, detecting leaks that might not otherwise be detected by sparsely distributed wired units. Just about any type of wired sensing technology can be adapted for wireless and some incorporate multiple capabilities, combining both IR and electrochemical for example. At the sensor level, there is little difference in the basic technology deployed between a wired and a wireless gas detector.

However, using sensors designed for wired gas detectors in a true wireless (no power and signal wires) application, would be impractical as batteries would require replacement in months instead of years. Figure 1 shows the exterior of a wireless gas detector with all of the built in protections necessary for deployment in inside and outside hazardous area locations. It shows the antenna by which it communicates with its host. The housing should be rated Class 1 Div 1 explosion proof, and there should be a graphic display that shows gas concentration, network, calibration, temperature and battery status. Accessible field connection points should be rated intrinsically safe for Zone 1, allowing connection to a hand-held communicator for configuration and testing as well as for swapping out sensor types without a hot permit.

Figure 1

Once the sensor takes the measurement, the wireless devices send signals to a wireless
gateway which can be connected to a fire &gas control system, distributed control systems (DCS) or programmable logic controller (PLC) host for processing. The wireless signals may be designed using any network protocol, although, as will be discussed later, standard open protocols such as Wireless HART have specific advantages.

In our next post, we will explore the applications of the wireless device. Stay tuned!

 

by: Wil Chin, Vice President of Marketing and Business Development at United Electric Controls

Joe Mancini, Senior Product Manager at United Electric Controls

Greg LaFramboise, Retired Wireless Technology Lead, Chevron